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Novel numerlcal solutions of Master and Fokker-Planck equations are described and com- 
pared for equivalent discrete and contmuous problems The two methods mvolve the 
calculation of long-time-step propagator matrlces, whose smgle apphcatlon IS equivalent to 
many lteratlons of a Iirute difference scheme For the discrete method we present two analytic 
propagators which are exact for growth-only (no decay) processes. and two approximate 
propagators for growth and decay processes The contmuous method couples a discrete boun- 
dary condltlon for small clusters with an effclent contmuous descrlptlon for large clusters 
These two methods are apphed to the nucleation and growth of vapor-deposlted thm films 
whose atoms cluster together to form Islands (Volmer-Weber growth) Moblhty coalescence 
of Islands IS Included to show how “slow” nonhnear processes may be included m the 
model ( 198X Academv Pres, Inc 

I. INTRODUCTION 

An enormous variety of systems of interest in the physical, biological, and social 
sciences may be described by means of Master or rate equations. A typical example 
for describing the nucleation and growth of thin films IS 

dN, 
x= -(G,+D,)N,(r)+G,~,N,-,(t)+D,,,N,+,(r) 

where N, is the number of clusters of I atoms, G, is the growth rate of clusters from z 
atoms to z + 1 atoms, and D, 1s the decay rate of clusters from z atoms to i- 1 
atoms by emission of atoms. To solve for a distributron of cluster sizes ranging from 
1 to 10,000 atoms per cluster, one would solve 10,000 individual coupled rate 
equattons, one for each cluster size 
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This Master equation approach is extremely powerful because it accurately 
models individual physical processes. However, the approach is limited by its 
excessive computational requirements, because the equations are coupled and must 
be solved iteratively, which could require thousands of iterations. The purpose of 
thts paper IS to show how to calculate long time-step propagator matrices which 
allow these extreme computational requtrements to be greatly reduced for many 
classes of both discrete and continuous problems. 

In Section II, we discuss discrete propagator methods and give a simple example 
using an exphcit finite difference scheme. We then present four propagator methods 
which are far more efficient than finite-difference methods for many problems. 

In Section III, we discuss propagator methods for continuous systems. We show 
how tt is possible to transform discrete Master equations mto equivalent con- 
tmuous Fokker-Planck equations [l-6]. A contmuous description of a dtscrete 
process usually allows an increased numerical efficiency while sacrificing some 
degree of accuracy. We present a simple scheme for taking large time-steps which 
greatly increases numerical efficiency in many systems. 

In Sectton IV, we apply the discrete and contmuous methods to a standard 
problem m thm film nucleation, the deposition of Au onto NaCl where the Au 
atoms cluster together to form Islands. A novel and highly accurate method for 
calculatmg the boundary condmons is discussed. The results of the discrete and 
continuous methods are nearly identical, and the continuous method is stgnilicantly 
more efficient. 

Section V descrtbes how to Include slow physical processes, such as the 
coalescence of two islands into a smgle larger one. Mobility coalescence has not 
been included in previous calculations, except in the case of small clusters [7]. 
Coalescence IS a highly nonlinear process, but it acts on a time scale much slower 
than that of the capture of individual atoms, so it may be treated as a perturbation 
on the propagator methods This method IS then applied to the nucleation and 
growth of Au/NaCl, in which mobility coalescence of Au clusters IS important. 

II. PROPAGATORS FOR DISCRETE SYSTEMS 

A propagator is a Green’s function whtch, when applied to a function, propagates 
that function forward m time. A propagator matrix describes the time evolution of 
each part of a vector. For example, 

m,(f, + T) = 1 T,!(T) m,(f,,, (1) 

where Z,(r) IS a vector specifymg the numbers of clusters of each size, I, at time t, 
and T,,(T) is a propagator matrix correspondmg to a ttme step of T. Repeated 
applications of the matrix can propagate the vector to any future time. The purpose 
of this paper is to show how to calculate accurate propagator matrices which allow 
large time-steps. 
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In general, it IS a straightforward matter to calculate a sufficiently accurate 
propagator matrix for use m the numerical scheme. A simple example of generatmg 
a propagator matrix is by application of an exphcit finite difference scheme, where 
the dlfferencmg is done with respect to time. For a growth-only process, the 
equations are 

dN, 
dr= -G,N,(t)+G,_,N,-,(f) 

N,(t,+r)= N,(f,,)+r$ _ 
I - I” 

Combmmg Eqs. (2) and (3) yields 

N,(r,+T);zN,(t,)Cl+r(-G,)l+N,-,(t,,)CsG,~,l. (4) 

This yields a propagator matrix T,,(s), which satisfies Eq ( 1) and which can be 
rewritten as 

N,(f,+r)=T,,(s)N,(f,)+ T,, ,(T)N,+,(~,)=C T,,(T) N,(r,), (5) 

where 

T,,(T) = 1 - TG, 

T ,j.,(~)=rG,+, 

T,,( T ) = 0 for J#L I- 1 

(6) 

In other words, T,,(r) IS the fraction of rhe function at ! at time t, that has 
propagated to J at time t, + z. This fimte difference method, cast m propagator 
matrix form, IS valid only for a small time-step r; as T Increases, so does the error. 
For example, If the growth rates are equal and are such that 10% of the function 
propagates from i to i+ 1 during time T, then approximately (4 x 10% = ) 5 % of the 
function at I + 1 should contmue to propagate to l+ 2; since the finite difference 
scheme does not allow for 2-grid-space propagation, it would be m error by 
approximately (5 % x 10% = ) 0.5 % at I + 2. 

The propagator methods to be discussed overcome this limitation by allowmg the 
function to propagate to aqv grid point. During the time of propagation, the rate 
equations are assumed to be hnear so that the prmclple of superposition may be 
used. In other words, the propagation of each part of the function IS calculated 
independently of the change of the rest of the function. This is a good 
approximation If and only If the propagation of the function only slightly changes 
the growth and decay rates. Thus, It is possible to solve nonlmear equations by 
assummg they are lmear during a small time-step 5. 

We present four propagator methods for four different cases’ growth-only 
processes with equal growth rates; growth-only processes with non-equal growth 
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rates; growth and decay processes with constant or slowly varying growth and 
decay rates; and general growth and decay processes. 

Case 1. Equal Growth Rares. For growth-only processes, it is straightforward 
to construct exact propagator matrices. If the growth rates G, are equal for all I and 
constant in time, then the propagation of the function at I to all J > I is found by 
solving 

dN, 
-z= -GN,(t) + GN,m ,(r) 

dN,+ 1 -= -GN,+,(t)+GN,(t) 
dt 

(7) 

dN, dr= -GN,(f)+GN,p,(r). 

If we consider only the propagation from N,(t,), then the boundary conditions are 
Nk + ,( t,) = 0 and N,( to) = N,( to), yteldmg 

where n, + k. 1 IS the part of the function which has propagated from i to I + k after a 
time-step 5. 

Let us now consider a different set of boundary conditions, where Nk(tO) # 0. By 
using the principle of superpositton, we can use the above result to mdividually 
calculate the propagation of each part of the function, and then sum the results of 
the propagation. The result is 

N,(r,+7)= c t~,~(t,+7). (9) 
I</ 

By comparison wtth Eq. (l), we find 

T,,(r)=exp( -Gr) 
(10) 

T 

Thus, we have found an exact propagator matrix for growth-only processes with 
equal growth rates. 

Case 2. Non-Equal Growth Rates. It is also possible to find an exact 
propagator for growth-only processes with non-equal rates (G,# G,), which are 
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constant m time. This calculation was inspired by a paper by Zinsmeister [S] and 
is similar to the above calculation for constant growth rates. The rate equations to 
be solved are 

W 
dt= -G,N,(t) + G,- ,N,- I(t) 

dN, -= -GkNk(r)+Gk~,Nk~,(t). 
dr 

As m Case 1, we use the principle of superposnion, which ytelds 

T,,(T) = exP( -G,T) 
(11) 

where 

c:;: = 1 for J=k=O, 

= 
CL+,-, 

G 
CICJ- 1 

-G,ck ‘+’ 

for k#J, 

I+/ 

for k=j#O (12) 

Thus, for a growth-only system, we can calculate a propagator for either equal 
growth rates (EGR) or non-equal growth rates (NEGR). Both propagators are 
exuct for any’ size time-step. However, if one has nearly equal growth rates in the 
NEGR method, one must retam many significant figures, espectally for large time- 
steps. This can be seen by inspection of Eqs. (11) and ( 12); when growth rates are 
nearly equal, the C; Ii become enormous, yet their summation in Eq. ( 11) must 
yield a T,+J.r between 0 and 1. The number of retained significant figures therefore 
limits the allowed time step of the NEGR method. Of course, for very nearly equal 
growth rates, the EGR method would be a good approxtmation, especially if G is 
appropriately averaged. 

Case 3. Haken’s Method. A better method for treating berth and death 
processes was presented by Haken [9]. He derived a propagator matrix which for 
one dimension can be written in the form 

(J-l-K,T)* 

TJr(T) = 
2Qr? > 

JmT ’ (13) 
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where K, the drift term, and Q, the diffusion term, are defined by 

K,=G,-D, 

QI = G, + D,. 

This method IS Inaccurate for small r, but becomes mcreasmglv accurate for large r. 
provided that K and Q are constant independent of i and t%e (see Fig. 1). c 

If K and Q vary slowly, then tt is possible to use a propagator developed by 
Wissel for continuous problems [lo] This propagator matrix has the form 

exp 
T,,(T) = 

(-~-+K,+DK,)-~~) 
- 

2~(@, + DQ,, ’ 

ANALYTIC PROPAGATOR 
1 

00 L 
12 I8 24 30 

06 

04 r=05 

02 

2 
z a 
b 06 

e 
z 04 I-=2 
0 
F 
d 02 

e 
g 00 /llilL- 
P 12 I6 24 30 

06 

1 
04 r=IO 

02 

00 
I2 16 24 30 

HAKEN PROPAGATOR 

06 

3 

04 r=05 

02 

00 iii. 
12 I8 24 30 

06 

04 r= 2 

02 

00 L 
I2 I8 24 30 

06 

04 T = IO 

02 

001 
I2 I8 24 30 

FINAL POSITION IN X-SPACE 

FIG 1 An uutlal histogram of height 1 at x= II IS propagated for different time-steps T by the 
analytuz (EGR) propagator and the Haken propagator for the case G = 1, D = 0 The results show that 
the Haken propagator IS Inexact for small r, but becomes mcreasmgly accurate for large 7 
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where c( + fl = 1; GL and j? define the relattve Importance of K and Q at the prepoint i 
and the postpoint J. If c1=0 and p = 1, then K and Q are determined at the 
prepoint; if tl = 1 and b = 0, then K and Q are determined at the postpoint. If 
c( = t = /?, then averaged values of K and Q are used; th:s is probably the best chotce 
for most problems with constant or slowly varying K and Q, especially tf the 
variation is lmear wtth respect to s. 

Case 4. Zteratrue Method. It IS also posstble to generate a long-time propagator 
matrtx for any problem by repeated Iterations of a short-time propagator matrix 
upon Itself. For example, consider the short-time propagator matrtx T,, of Eq. (1) 
generated by a finite difference scheme: 

AQto+r)= T,,(s)A&) (16) 

TO find m,(r, + 2r), we can apply F,,(r) again: 

~,(2,+2T)=T,,(r)m,(?,+r)=T,,(t)~,,(t)m,(r,). (17) 

If we stmply combine the two T,,, then we have a long-time-step-propagator F,,(25), 

F,,(2T) = F,,(T) T,,(T) (18) 

whtch sattsfies 

N,(r,, + 2T)= F,,(2T) N,(f,). (19) 

This process can be repeated indefinitely to calculate FJnr). 

This is a slow and cumbersome method of calculating a long-time-step 
propagator, but it is accurate, provided that the short time propagator is accurate. 
fJ should be noted that although T,,(T) may have only a few non-zero elements, 
T,,(nr) should have many non-zero elements 

In summary, we have presented four methods of calculating dtscrete propagators. 
The EGR and NEGR methods are exact for growth-only problems. The Haken 
method is nearly exact If the time-steps are moderately large and the K and Q terms 
remain nearly constant. The iterative method is computatronally expensive, and its 
accuracy is limited by the accuracy of the short-time propagator These methods 
are analogous to finite-difference schemes, but these methods generally allow larger 
trme-steps. If the propagator matrrx is easy to calculate or can be re-used, and if it 
allows larger time-steps, then these propagator methods are more effrcrent than 
finite difference schemes. 
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III. PROPAGATORS FOR CONTINUOUS SYSTEMS 

Discrete Master equations may be approximated by continuous Fokker-Planck 
equations of the form 

am t) -= 
at -2 [U-r) P(.G [)I +$$ [Qb, f’(x, t)l, (20) 

where P(x, t) is the probabihty density of the function (analogous to N, in discrete 
space), K(x) is the drift velocity, and Q(x) is the diffusion coefficient. This 
approximation is good if K and Q vary smoothly. Also, the boundary conditions of 
Section IV are important to force the solution of the Fokker-Planck equation to 
the solution of the Master equation. 

Wehner and Wolfer [l-6] used a path-sum method to calculate a propagator 
matrix which propagates parts of the function from one grid to another during a 
time-step t, with an efficiency comparable to a finite difference method. 

The propagator matrix has the form 

2 r, + A Y, 2 * x-, + A x, 2 

T,,(T) = Ax J dx 
,-,+Ax, y-A+,2 ! 

d-q, Gr(x, x0, T) (21) 
r,-Ar,+, 2 

and satisfies 

p,(t, + 5) = F,,(T) p,(fo), (22) 

where x0 and x are the prepoint and postpoint in contmuous space, Ax is the width 
of the histogram, and P is the height of the histogram (analogous to N in discrete 
space). Gr(x, x,,, T) is a propagator or Green’s function which propagates particles 
from x,, to x. There are many propagators which satisfy the Fokker-Planck 
equation to O(T~). The simplest form, given by Dekker [ 1 l] is 

WY, -x0, T) = J& exp 
(X-Xo-K(Xo)T)2 

- 
2Q(-x0) T > ’ 

(23) 

This is very similar to Haken’s discrete propagator (see Eq. 13). There are other 
propagators which also satisfy the Fokker-Planck equation to O(r2). For example, 
the Wissel propagator discussed in Section II may be written m contmuous form: 

exp 
w-5) 1 a2 x 

T',(T) = ax 2 ax2 Q( 01 J ,/h@(x,) + PQb,)) 

%‘%!(x;) + BQ(x,)) 
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The advantage of the Wissel propagator is that for c( =f=P, the propagator 
properly weights the values of K and Q at both the prepoint and postpoint. 

Wehner and Wolfer used a 9-banded matrix which was centered on the diagonal. 
This meant that a histogram at I would be propagated to i - 4, i - 3, . , I + 4. This 
forced a limitation on the time-step: 

IKTI <&=A.u. (25) 

In other words, one hmttation was that particles should not drift more than one 
grid spacing, since the combined drift and diffusion terms would then propagate a 
sigmlicant part of the function outside the 9 allowed bands. 

However, if the 9-banded matrix is centered about the most likely postpoint 
instead of about the diagonal, then much larger time-steps are allowed; i.e., ]KT] 
may exceed fi= Ax. The new limitation on the time-step is that K and Q remain 
nearly constant over the interval from the prepoint to the most likely postpoint .U, 

= 1 = Q(-x0) K(-xo) 
K(f) m’ 

where 

s = X” + 
s 

’ K(x) dt. 
0 

(26) 

If K and Q are constant independent of X, then there is no hmit on T and Dekker’s 
propagator is equivalent to Wissel’s. If K and Q vary slowly, then Wissel’s 
propagator is usually more accurate than Dekker’s propagator, since Wissel’s 
propagator includes K and Q at both the prepoint and postpoint. 

The efficiency of Wehner and Wolfer’s method goes as T'!'~, because as T IS 
increased, fewer iterations (N) of the propagator are required to find the solution at 
a later time t = NT, and fewer histograms are used to describe the function, since 
As = a. 

However, it is not necessary to require that Ax = ,/&. If Ax is chosen greater or 
less than fi, then the number of bands in the propagator should be, respectively, 
decreased or increased to make sure that the propagation from the prepoint is 
accounted for at all significant postpomts. If the number of bands is too small, then 
the function will not be conserved and will decrease due to propagation outside the 
bands This problem can be alleviated by normalization of the propagator matrix 
[l-6]. 

In summary, it is possible to recast the discrete Master equations as a set of 
contmuous Fokker-Planck equations. It is also possible to solve these equations 
numerically usmg a propagator method. The efficiency of the method can be 
Increased by choosing an appropriate set of bands in the propagator matrix, which 
allows a large time-step. 
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IV. APPLICATION TO THIN FILM NUCLEATION 

The drscrete propagator methods are now applied to a standard problem in thm 
film nucleatton, Au/NaCl. We show how to include the boundary condition of the 
problem, which is the deposition of new atoms onto the substrate. Then the 
analogous continuous propagator methods are also applied to thin film nucleation, 
and the same boundary condition is used. 

In thin film nucleation, several physrcal processes (deposition, re-evaporatton, 
diffusion, and capture--see Fig. 2) are described by a set of Master equations 

dN, -=+2N,G, - f N,G, 
dt a ,=2 

dN, 
dr= -G2N2+G,N, 

(27) 

!KL 
dt 

- -G,N,+G,-,N,-,, 

where N, is the number of clusters of I atoms, R 1s the deposition rate of atoms onto 
the substrate, TV is the average time before re-evaporation, and G, is the capture 
rate of atoms by clusters of I atoms. The factor of 2 in the first equation represents 
the loss of two monomers when they combine to form a dimer. G, is given by 

G,=a,D,N,-k7~rfR, (28) 

where or 1s the capture number for diffusion, D, is the diffuston rate of atoms on the 
substrate, and r, is the radius of the cluster. Thus, the first term corresponds to the 

re-evaporation deposltlon 
direct 

impingement 

substrate 

before after before after 

cluster 
dlffuslon 

x 

00 
MobW Coalescence Growth Coalescence 

FIG 2 Vapor deposltlon of atoms onto a substrate 
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capture of atoms by surface diffusion, and the second term corresponds to the 
capture of atoms by direct impingement on the cluster. Following the method of 
Lewts and Anderson [ 121, r~, IS found by assummg that the system 1s dilute; r.e , rt 
IS calculated by solving both a diffusron equatton 

J(V) = -D, grad N,(r) (29) 

and a contmuny equatton 
?N,(r) drv j(~)+~= -, R-N,(r) 

5, 
(30) 

where J 1s the flux. In the steady state, SN,(r)/dt=O. For the boundary condittons 
N,(x#) = Rt,,, N,(r,)=O, the solutron for the total flux to a cluster I, J,, is 

J 
, 

= 27d~,/J) K,(r,lA) D N (=) 

K,(r,/l) ’ ’ ’ 
(31) 

where K, and K, are zero- and first-order modified Bessel functions, and ,I = fi 
IS the mean free path before desorption. Smce ~J,=JJ(D, N,(m)), gr m Eq. (28) 1s 
now defined. 

It is possible to solve Eq. (27) usmg a dtscrete propagator method. Smce rt IS 
already assumed that the decay of clusters IS negligible, this 1s a growth-only 
process which can be described by the EGR and NEGR methods of Section II. 
Since G, varies sigmlicantly only for small I, we use the NEGR method for 
calculatmg the propagation of clusters initially smaller than 100 atoms. For clusters 
with more than 100 atoms, it 1s possible to use the EGR method using an 
appropriately averaged G, 

G, = t( G( prepomt ) + G(most likely postpoint)). (32) 

The propagator methods cannot be used to calculate the boundary condmon, 
which is the nucleation of new islands. However, for dilute systems where N, is 
nearly constant for a time-step 5, it is possible to calculate the number of newly 
nucleated islands. Following the method of Zinsmetster [S], the number of islands 
I\ip( t, + r), which nucleated and grew to exactly I atoms during a time-step T is: 

where 

1+ i CkreKGh’ 1 , (33) 
k-2 

c/,,= I for k=l 

G 
= c,.,-, A 

G,-Gk 
for k#l 

r-l 
= - c c,, for k=l. 

,=I 
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FIG 3 Results of discrete propagator model of the deposItIon of Au onto NaCl for different 
deposItIon times Mob&y coalescence 1s not Included m this model. 

In summary, we use the EGR and NEGR methods to calculate the propagation 
of existing clusters of two or more atoms, and we use Zinsmeister’s method to 
calculate the nucleation rate of new clusters. This yields a set of size distribution 
histograms, which is graphed as a curve m Fig. 3. Each curve corresponds to the 
function at a different time. 

The same sort of calculation can be done using continuous methods. As with the 
discrete case, the continuous propagator is used to propagate the existing clusters. 
Although it is possible to calculate the nucleation of new clusters using continuous 
boundary condition methods, this is somewhat inaccurate, since the G, vary 
significantly near the boundary which is i= 1 for cluster nucleation. It is more 
accurate to use Zinsmeister’s method and then transform those discrete results into 
continuous form. This yields the nucleation rate of new clusters, and this effect is 
simply added to the propagation of new clusters. To summarize, we add a discrete 
solution near the boundary to a continuous solution far from the boundary. 

The results of the continuous method are the same as the results of the discrete 
method (Fig. 3) to within 1%. The discrepancies are largely due to the effect of 
approximating several discrete points as a single histogram. Since the continuous 
version used approximately one-third as many grids, it is about three times more 
efficient. For larger T, the continuous method is increasingly efficient, since fewer 
grids are used, but this decreases the accuracy 
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V. NONDOMINANT PHYSICAL PROCESSES 

In thin film nucleation, the capture of atoms by clusters is the dominant process, 
and this is a one-step physical process (clusters grow by one atom). However, there 
are also two possible multi-step physical processes, mobility coalescence and 
growth coalescence. Mobihty coalescence IS the diffusion of one cluster to another, 
where clusters merge to form a single cluster; growth coalescence is the growth of 
one cluster mto another. Growth coalescence becomes very sigmlicant when about 
40% of the substrate is covered, but mobility coalescence can be sigrulicant much 
earher if the clusters are mobile. 

The experimental size distribution curves measured by Schmeisser [13] give a 
clear demonstration of mobihty coalescence. He deposited Au on NaCl, and obser- 
ved the effect of coalescence (decrease m total number of clusters and increase m 
cluster size). Since the total coverage of the substrate was under 5%, mobihty 
coalescence rather than growth coalescence must have been the mechanism. 

In this section, we present the results of a computer simulation of Schmeisser’s 
experiments. To mcorporate mobihty coalescence into the model, it is important to 
reahze that it acts on a much slower time-scale than that of the dominant process 
(capture of atoms by clusters) Therefore, it is possible to briefly ignore mobility 
coalescence and use the propagator methods of Sections II and III to evolve the 
distribution by one time-step. Then the effect of mobility coalescence can be 
Included as a perturbation on the propagator methods. 

To determme the rate at which a cluster tends to capture other diffusing clusters, 
one solves a diffusion equation and a contmmty equation. The diffusion equation 
for the total flux to a disk is 

where J is the total flux of clusters to a cluster, D is the diffusion rate, C is the 
concentration of all the clusters, and a is the radius of the cluster. The continuity 
equation assumes a dilute system where capture by other clusters is insignificant, 

v2c=o (35) 

which yields 

C(r)=Alnr+B, (36) 

where A and B are unknown coefficients. Two boundary conditions are applied, 

C(a) = 0 

C(R)=?, 
(37) 

where R is the edge of the Verom cell defined by R = (~2) ’ 2, and C is the average 
concentration far from the cluster. This yields 
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C’(+C r 
ln( R/a) In a’ (38) 

Combining Eqs (34) and (37) yields 

J=2rDc 
In(&) (39) 

which is the rate at which a cluster captures other clusters. 
To evolve the cluster distribution efficiently, we group the clusters in large sets, 

where set 1 has clusters of 2 to 51 atoms, set 2 has clusters of 52-101 atoms, etc 
For each set, we determine the number of clusters in the set and the weighted 
average diffusion rates and size (the numbers of atoms in the cluster). Then the rate 
of capture of every set by all sets IS calculated; this depletes the population of the 
original sets and creates new clusters These new clusters are spread proportionately 
between the two new sets whose average sizes are centered about the average size of 
the new clusters. After all these calculations are done, then the original cluster 
population is decreased proportionately accordmg to the proportron of the set 
which coalesced Then the population of the new sets are added to the modified 
populatton of the origmal distribution. 

This method is far more efficient than mdrvidually calculatmg the rate of 
coalescence of each cluster size with all possrble cluster sizes. However, it is only an 
approximation which is especially inaccurate when the diffusion rate of the clusters 
varies dramatically within a set. 

It seems that there are two mechanisms responsrble for drffuston, both a rapid 
dtffusion mechanism for small islands and a slower diffusion mechamsm for large 
Islands. The small island mechanism IS probably the random movement of 
mdtvtdual atoms in a cluster; this IS best rllustrated by a drmer whose two atoms 
contmually shift position but remam adjacent to one another. Thus the mobility of 
small clusters should decrease with increasing cluster size, but the exact relationship 
IS not known, so this mechanism is not included m the model. 

The large island mechanism is probably the random movement of the cluster as a 
whole due to “dislocatrons” between the Island and the substrate. This mechanism 
should have a drffusion rate which IS mversely proporttonal to the area of the 
cluster, and this mechamsm IS included in our model. 

In Fig. 4, we display the results of our continuous propagator method which 
includes mobility coalescence We found that the best tit to Schmeisser’s experimen- 
tal curves [13] was found by assuming the material parameters 

D = 3 x 10” AZ/s I 

r,=l 5x lO--‘s 

D =5x10P6D, 
I ,23 ’ 

where D, IS the diffusion rate of a cluster of i atoms. 
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FIG 4 Results of contmuous propagator method of the deposItIon of Au onto NaCl for different 
deposItIon times The physical parameters arc the same as m Fig 3. but moblhty coalescence 1s mcluded 
m this model 

D, and rrr were found by fitting the posttion and height, respecttvely, of the peaks 
of the curves for 6, 9, 12, 15, and 20 s of depositton. After 20 s, the density of the 
clusters has increased sufftctently for mobthty coalescence to become important. 
Coalescence decreases the total number of clusters and the number of small clusters, 
but It mcreases the number of large clusters. D, was found by fitting Schmetsser’s 
30-, 45-, and 60-s curves, where coalescence IS dominant. 

The above esttmates for D, and TV are probably accurate to wlthm a factor of 
two. The estimate for D, is probably accurate to within a factor of live. The estimate 
for D, does tit the data well, but It 1s not necessartly the exact relatlonshrp of I to 
D,. Future comparisons with expertmental data for different deposition conditions 
are planned, and those compartsons should determine more clearly the accuracy 
and predictive ability of this model. 

In concluston, m this sectton we have shown how slow processes may be 
accurately treated as perturbattons on the basic propagator methods (of Sections II 
and III) by periodtcally includmg the perturbattons after one or more applications 
of the propagator. An example of thts 1s mobtlity coalescence of islands which 
predominantly grow by capturing mdtvtdual atoms. Thts example yielded realisttc 
estimates of the diffusion and evaporatron rates of Au clusters on NaCl. 
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VI. SUMMARY 

Propagator methods are capable of accurately and efficiently solving both 
discrete Master equations and equivalent continuous Fokker-Planck equations. 
Four methods of calculating discrete propagator matrices have been described: the 
NEGR and EGR methods for growth-only problems; Haken’s method for 
problems with slowly varying growth and decay coefficients, and an iterative 
method for general problems. For problems in which the growth and decay rates 
vary slowly in time, these methods allow larger time-steps than explicit finite 
difference schemes and thus are typically orders of magnitude faster. 

The equivalent continuous propagator methods yield nearly identical results to 
the discrete methods. Also, by decreasing the number of grid points used to describe 
the function, the continuous method may be increased m efficiency at a modest cost 
m accuracy. Thus, the continuous method IS best for describing the evolution of 
functions which vary slowly in coordinate space and have many (i.e., thousands) of 
discrete grid points. The continuous method employed here 1s much more eflictent 
than limte differences in highly deterministic systems. We have shown how to 
couple a more accurate discrete boundary condition to the contmuous function for 
certain cases. 

Finally, we have applied these propagator methods to a real problem-the 
nucleation and growth of vapor-deposited thm films. Propagator methods were 
used to describe the dominant process, the capture of atoms by clusters. Mobility 
coalescence, a slower process, was periodically included as a perturbation on the 
process described by propagator methods. By comparison with experimental 
results, it was possible to quantitatively determine diffusion and re-evaporation 
rates. These numerical simulations using propagator methods were orders of 
magnitude faster than an explicit finite difference scheme would have been. 
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